Supplementary Materials

Synthesis of unsymmetrically substituted pyrene derivatives through (6-bromo-3,8-dibutylpyren-1-yl)trimethylsilane

Akihiro H. Sato, Mine Maeda, Shigenori Mihara, Tetsuo Iwasawa*
Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University,

Otsu, Shiga 520-2194, Japan

Contents
a) General
b) Materials
c) Preparation of 1,6-dibromo-3,8-dibutylpyrene
d) Characterization data for compounds 3-13 in Table 1
e) Characterization data for compounds 14,15 , and 16
f) Characterization data for compounds 18-26 in Table 2
g) ${ }^{1} \mathrm{H}$ NMR Spectra for $\mathbf{1 , 6}$-dibromo-3,8-dibutylpyrene
h) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for (6-bromo-3,8-dibutylpyren-1-yl) trimethylsilane 1
i) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for Compounds 2-13 in Table 1
j) $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for Compounds 14,15 , and 16
k) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for Compounds 17-26 in Table 2
a) General: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a BRUKER-SPECTROSPIN-400 with a 5 mm QNP probe at 400 MHz and 100 MHz , respectively. Chemical shift values, reported in parts per million (ppm), were indirectly referenced to external tetramethylsilane employing resonances due to trace monoprotio-solvent as an internal reference. Abbreviations are as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Elemental analyses were performed with Yanaco MT-5 CHN-Corder. Mass spectra were reported on a JEOL GC-mate II (for FAB). Column chromatography was carried out with silica gel, Silica Gel 60N (Kanto Chemical Co.). Thin-layer chromategraphy analyses were performed on Merck silica gel 60 F_{254}. Reactions were performed under an argon atmosphere unless otherwise noted. Materials were purchased from Kanto Chemicals, Co., Inc., and Wako Pure Chemicals, and Tokyo Chemical Industry Co., LTD., and Acros Organics. All the chemical materials were used without further purification.
b) Materials: In the starting materials for the cross-coupling reactions, arylboronic acid compounds were purchased from Tokyo Chemical Industry Co., LTD. and used without further purification. The dehydrated toluene, DMF, and potassium carbonate were purchased from Wako Chemicals, Co., Inc., and used without further purification. Other bases were purchased and used without further purification. $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$ (dba ; dibenzylideneacetone) (Strem Chemicals), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (Nacalai tesque, INC.), and PCy_{3} (Strem Chemicals) were used as received.

c) Preparation of $\mathbf{1 , 6}$-dibromo-3,8-dibutylpyrene

1,6-dibromo-3,8-dibutylpyrene: To the suspension of 1,6-dibromopyrene ($24 \mathrm{~g}, 66 \mathrm{mmol}$) in anhydrous THF (320 mL) was cooled to $-78^{\circ} \mathrm{C}$, and added n - $\mathrm{BuLi}(160 \mathrm{mmol}, 1.62 \mathrm{M}$ in hexane) dropwise over 15 min . The suspension was stirred for 15 min , and 1-bromobutane ($17 \mathrm{~mL}, 160 \mathrm{mmol}$) was slowly added over 10 min . The reaction was allowed to warm to room temperature in 2.5 h , and quenched with methanol at $0^{\circ} \mathrm{C}$. The resultant precipitates were filtered off, and washed with water, and dissolved in chloroform. The organic phases were washed with brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give the crude. The crude product was purified by short-plug column chromatography (chloroform only), and the resultant yellow materials were provided to next step without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.05(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.84(\mathrm{tt}, J=7.7 \mathrm{~Hz}, 7.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.51(\mathrm{tq}, J=7.3 \mathrm{~Hz}, 7.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.00(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl3) $\delta 137.2,129.7,129.1,125.7,127.4$ (two peaks are overlapped), 124.6, 122.7, 34.3, 33.7, 23.1, 14.3. EI-MS $m / z: 314\left(\mathrm{M}^{+}\right)$. Anal. Calcd For $\mathrm{C}_{24} \mathrm{H}_{26}$: C, 91.67; H, 8.33. Found: C, 91.44; H, 8.30. To the 2 L flask charged with 1,6-dibutylpyrene ($40 \mathrm{~g}, 128 \mathrm{mmol}$) was added $\mathrm{CCl}_{4}(800 \mathrm{~mL})$, and to the pale yellow cloudy was added bromine ($14 \mathrm{~mL}, 269 \mathrm{mmol}$) dropwise over 1.5 min . After stirring at room temperature for 30 min , the reaction mixture of orange suspension was quenched with methanol. The precipitates were washed with methanol, and filtered to give crude product as pale yellow solid. The crude product was recrystallized from toluene to afford 39 g of 1,6-dibromo-3,8-dibutylpyrene in 65% yield as pale yellow solid materials. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H})$, $8.23(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.12(\mathrm{~s}, 2 \mathrm{H}), 3.28(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.82(\mathrm{tt}, J=7.8 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 4 \mathrm{H})$, $1.51(\mathrm{tq}, J=7.8 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H})$. EI-MS m/z: $472\left(\mathrm{M}^{+}\right)$. Anal. Calcd For $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{Br}_{2}$: C, 61.04; H, 5.12. Found: C, 60.97; H, 5.06.
d) Characterization data for compounds 3-13 in Table 1

methyl 3-(3,8-dibutyl-6-(trimethylsilyl)pyren-1-yl)benzoate (Table 1, entry 2): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39$ (d, $\left.J=9.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 8.32-8.29 (m, 2H), 8.17-8.15 (m, 2H), $8.06(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.02$ (s, 1H), 7.83-7.82 (m, 2H), 7.63 (t, $J=7.7 \mathrm{~Hz}, 7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ (s, 3 H), $3.37(\mathrm{t}, J=7.8 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{t}, J=7.8 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.92-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.04-0.97(\mathrm{~m}, 6 \mathrm{H}), 0.61(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4,142.2,137.1,136.1,135.9$, $135.5,135.4,134.5,134.1,131.9,130.6,129.9,129.0,128.61,128.57,128.0,127.2,126.5$, $126.0,125.3,123.4,122.4,52.4,34.5,34.4,34.0,33.8,23.31,23.26,14.4,1.0$ MS (FAB) m / z : $520\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{O}_{2}$ Si: C, 80.72; H, 7.74. Found: C, 80.47; H, 7.56.

methyl 2-(3,8-dibutyl-6-(trimethylsilyl)pyren-1-yl)benzoate (Table 1, entry 3): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.36$ (d, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}$), $8.30(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.10-8.06(\mathrm{~m}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=$ $9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{dt}, J=1.4 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.56(\mathrm{dt}, J=1.4 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=1.1 \mathrm{~Hz}, 7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.38-3.26(\mathrm{~m}, ~ 8 \mathrm{H}), 1.90-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.44(\mathrm{~m}, 4 \mathrm{H})$, 1.01-0.97 (m, 6H), $0.60(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.6$, 142.3, 136.7, 136.6, 135.9, 135.1, 134.6, 133.9, 132.7, 132.3, 131.6, $130.4,129.9,128.4,128.2,127.7,127.5,126.1,126.0,125.5,123.0$, $122.6,52.1,34.5,34.4,34.0,33.7,23.3,23.2,14.5,14.4,1.0 . \mathrm{MS}(\mathrm{FAB}) m / z: 520\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{Si}$: C, 80.72; H, 7.74. Found: C, 80.74; H, 7.48.

4-(3,8-dibutyl-6-(trimethylsilyl)pyren-1-yl)benzaldehyde (Table 1, entry 4): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.2$ (s, 1 H), 8.40 (d, $J=9.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.10-8.06$ $(\mathrm{m}, 3 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.83-7.81(\mathrm{~m}, 3 \mathrm{H}), 3.37(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.30(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.46(\mathrm{~m}, 4 \mathrm{H})$, 1.04-0.98 (m, 6H), $0.62(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.1$, $148.2,137.1,136.1,135.7,135.6,135.3,134.5,134.2,131.5,129.84$, $129.76,128.8,128.7,128.3,127.0,126.5,125.9,125.0,123.5,122.4$, $34.5,34.3,33.9,33.8,23.3,23.2,14.34,14.33,1.0$. MS (FAB) $m / z: 490\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{OSi}$: C, 83.21; H, 7.80. Found: C, 83.21; H, 7.76.

2-(3,8-dibutyl-6-(trimethylsilyl)pyren-1-yl)benzaldehyde (Table 1, entry 5): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.64$ (s, 1H), 8.43 (d, $J=9.4$ $\mathrm{Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.19-8.13(\mathrm{~m}, 2 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H})$, $7.79(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.58(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{t}, J=7.7$, $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{t}, J=7.7,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.92-1.75(\mathrm{~m}, 4 \mathrm{H})$, 1.57-1.44 (m, 4H), 1.03-0.96 (m, 6H), $0.60(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.4,145.5,136.8,136.4,136.0,135.4,134.5,134.3$, $133.7,132.5,132.2,129.7,129.0,128.7,128.4,128.3,127.3,126.2$, $125.7,125.2,124.0,122.4,34.5,34.3,34.0,33.7,23.22,14.35,14.32$, 1.0. MS (FAB) $m / z: 490\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{OSi}$ C, 83.21 ; H, 7.80. Found: C, 83.24; H, 7.70.

(3,8-dibutyl-6-(4-methoxyphenyl)pyren-1-yl)trimethylsilane (Table 1, entry 6): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.35$ (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}$), $8.28(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=9.5 \mathrm{~Hz}$, $1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{t}, J=7.8,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{t}, J=7.8$, $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.03-0.96(\mathrm{~m}, 6 \mathrm{H})$, $0.60(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2,137.2,137.0,135.7$, $135.0,134.7,134.2,134.0,132.0,130.0,129.3,128.1,127.7,127.4,126.6,126.2,126.0,122.9$, $122.5,114.1,55.5,34.5,34.4,34.0,33.8,23.34,23.29,14.42,14.41,1.1$. MS (FAB) m/z: 492 $\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{OSi}$: C, 82.87; H, 8.18. Found: C, 82.88; H, 8.20.

(3,8-dibutyl-6-(2-methoxyphenyl)pyren-1-yl)trimethylsilane (Table 1, entry 7): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.35(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.29(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~m}, 1 \mathrm{H}), 7.83$ $(\mathrm{d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 2 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.24(\mathrm{~m}, 4 \mathrm{H}), 1.92-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.45(\mathrm{~m}, 4 \mathrm{H})$, 1.03-0.97 (m, 6H), $0.60(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.7$, 136.8, 135.7, 134.9, 134.6, 134.1, 133.9, 132.8, 130.7, 130.1, 129.7, $129.3,128.4,128.1,127.7,126.5,126.4,126.1,122.6,120.9,111.5$, $55.8,34.5,34.3,34.1,33.8,23.3,23.30,14.5,14.4,1.1$. MS (FAB) m/z: $492\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{OSi}$: C, 82.87; H, 8.18. Found: C, 82.87; H, 8.20.

(6-(2-bromophenyl)-3,8-dibutylpyren-1-yl)trimethylsilane (Table 1, entry 8): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.31$ $(\mathrm{d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.47(\mathrm{~m}, 2 \mathrm{H})$, 7.37-7.33 (m, 1H), 3.41-3.25 (m, 4H), 1.92-1.76 (m, 4H), 1.57-1.45 $(\mathrm{m}, 4 \mathrm{H}), 1.02-0.96(\mathrm{~m}, 6 \mathrm{H}), 0.61(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 142.5,136.8,136.14,136.13,136.12,135.4,134.5,134.1$, 133.1, 132.7, 129.9, 129.3, 128.9, 128.7, 128.1, 127.6, 127.4, 126.2, $125.9,125.7,125.1,123.2,122.5,34.5,34.3,34.1,33.8,23.3,23.2,14.44,14.39$, 1.1. MS (FAB) m/z: $542\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{37} \mathrm{BrSi}: \mathrm{C}, 73.18 ; \mathrm{H}, 6.89$. Found: C, 73.22; H, 6.81.

4-(3,8-dibutyl-6-(trimethylsilyl)pyren-1-yl)benzamide (Table 1, entry 9): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.30$ (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.03(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.37(\mathrm{t}, J=7.3 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{t}, J=7.8 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.30(\mathrm{t}, J=7.8 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.92-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.46(\mathrm{~m}, 4 \mathrm{H})$, 1.03-0.97(m, 6H), $0.61(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2$, $145.7,137.1,136.0,135.5,134.5,134.1,132.4,131.2,129.79,129.77$, $128.9,128.8$, 128.6, 128.1, 127.8, 127.1, 126.4, 125.9, 125.2, 123.3, 122.4, 34.4, 34.2, 33.9, 33.7, 23.22, 23.19, 14.3, 1.0. MS (FAB) m/z: $505\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{NOSi}$ C, 80.74; H, 7.77; N, 2.77. Found: C, 80.71; H, 7.65; N, 2.94.

4-(3,8-dibutyl-6-(trimethylsilyl)pyren-1-yl)pyridine (Table 1, entry 10): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.79$ (d, $J=4.2 \mathrm{~Hz}, 2 \mathrm{H}$), 8.41 (d, J $=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.09$ $(\mathrm{d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.58(\mathrm{~m}, 2 \mathrm{H}), 3.37$ (t, $J=7.7,77 \mathrm{~Hz}, 2 \mathrm{H}$), $3.31(\mathrm{t}, J=7.7,7.7 \mathrm{~Hz}, 2 \mathrm{H}$), $1.92-1.78$ (m, $4 \mathrm{H}), 1.59-1.47(\mathrm{~m}, 4 \mathrm{H}), 1.04-0.98(\mathrm{~m}, 6 \mathrm{H}), 0.61(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.9,149.6,137.1,136.2,135.8,134.4,134.1$, 133.9, 129.6, 128.9, 128.4, 128.2, 126.7, 126.3, 125.8, 124.6, 123.6, $122.2,34.4,34.1,33.8,33.6,23.2,23.1,14.2,0.9$. MS (FAB) m/z: $463\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{NSi}$: C, 82.88; H, 8.04; N, 3.02. Found: C, $82.90 ; \mathrm{H}, 8.00 ; \mathrm{N}, 3.11$.

(3,8-dibutyl-6-((trimethylsilyl)ethynyl)pyren-1-yl)trimethylsilane (Table 1, entry 11): (6-bromo-3,8-dibutylpyren-1-yl)trimethylsilane $\mathbf{1}$ ($116 \mathrm{mg}, 0.25 \mathrm{mmol}$) was dried in vacuo in a Schelenk tube with heating, then $\mathrm{CuI}(4.8 \mathrm{mg}, 0.025 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(8.8 \mathrm{mg}$, $0.0125 \mathrm{mmol})$, and $\mathrm{PPh}_{3}(6.6 \mathrm{mg} 0.025 \mathrm{mmol})$ were added. The whole system was evacuated and backfilled with argon three times, then toluene and $\mathrm{Et}_{3} \mathrm{~N}$ (each 1.5 mL) were added. The reaction mixture was stirred at room temperature for 15 min , and followed by additional stirring at $70{ }^{\circ} \mathrm{C}$ for 1 h . The solution was filtered through a pad of celite and florisil, and the crude product was purified with column chromatography (Hexane only) to yield 12 in 91% (110 mg) as yellow solid materials. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.58(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.31$ (d, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 3.35-3.27(\mathrm{~m}, 4 \mathrm{H})$, $1.87-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.03-0.99(\mathrm{~m}, 6 \mathrm{H}), 0.59(\mathrm{~s}, 9 \mathrm{H}), 0.39(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.8,136.7,135.9,134.21,134.15,131.1,131.0,129.9,129.3,128.6$, $126.0,125.8,125.3,123.9,122.3,117.1,104.9,99.9,34.6,34.1,33.5,23.3,23.2,14.3,1.0,0.5$. MS (FAB) $m / z: 482\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{Si}_{2}$: C, 79.60; H, 8.77. Found: C, 79.66; H, 8.77.

1-(3,8-dibutyl-6-(trimethylsilyl)pyren-1-yl)pyrrolidine (Table 1, entry 12): $\mathrm{NaO}^{t} \mathrm{Bu}(72 \mathrm{mg}, 0.75 \mathrm{mmol}$) was dried in vacuo in a Schelenk tube with heating, then $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(13 \mathrm{mg}, 0.0125$ mmol), and BINAP ($16 \mathrm{mg}, 0.025 \mathrm{mmol}$) were added. The vessel was purged with argon. Toluene $(2.0 \mathrm{~mL})$ was added to the vessel, and stirred for 15 min. Then, (6-bromo-3,8-dibutylpyren-1-yl)trimethylsilane $\mathbf{1}$ (116 mg, 0.25 mmol) was added, and stirred for 15 min . Pyrrolidine ($0.06 \mathrm{~mL}, 0.75 \mathrm{mmol}$) was added, and the vessel was sealed. The mixture was slowly heated to $90^{\circ} \mathrm{C}$ over 1.5 h . After stirring for a further 15 h at $90{ }^{\circ} \mathrm{C}$, the mixture was filtered through a pad of Celite and florisil. The crude product was purified with column chromatography (Hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=9 / 1$) to yield 13 in 70% $(80 \mathrm{mg})$ as brown solid materials. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 8.13-7.93 (m, 3H), 7.49 (brs, 1H), $7.26(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{brs}, 4 \mathrm{H}), 3.29(\mathrm{t}, J=7.7 \mathrm{~Hz}, 7.7 \mathrm{~Hz}, 4 \mathrm{H})$, 2.11 (brs, 4 H$), 1.88-1.79(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.03-0.99(\mathrm{~m}, 6 \mathrm{H}), 0.57(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.2,137.8,135.0,134.4,133.7,133.4,130.3,127.8,126.3,125.1,124.4$, $123.5,122.4,121.2,120.7,116.1,53.6,34.4,34.2,34.1,33.9,25.4,23.24,23.23,14.3,0.8 . \mathrm{MS}$ (FAB) m / z : $455\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{41} \mathrm{NSi}: \mathrm{C}, 81.70 ; \mathrm{H}, 9.07$; N, 3.07. Found: C, 81.70; H, 9.07, N, 3.22.

e) Characterization data for compounds 14,15 , and 16

methyl 4-(6-bromo-3,8-dibutylpyren-1-yl)benzoate 14: To the suspension of 4-(3,8-dibutyl-6-(trimethylsilyl)pyren-1-yl)benzoate 2 $(1.0 \mathrm{~g}, 2 \mathrm{mmol})$ in anhydrous $\mathrm{CCl}_{4}(4 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$. The mixture was added 3 mL of bromine (1 M of CCl_{4} stock solution) dropwise over 20 min , and stirred for 15 min . The reaction was allowed to warm to room temperature. After stirring for 1 h at ambient temperature, the reaction was quenched with water. The crude product was purified with column chromatography (Hexane $/ \mathrm{CHCl}_{3}=1 / 3$) to yield $\mathbf{1 4}$ in $91 \%(903 \mathrm{mg})$ as yellow solid materials. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.43(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, 8.30-8.23 (m, 3H), 8.11-8.04 (3H), $7.83(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 1 \mathrm{H}), 3.22(\mathrm{t} . J$ $=7.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{t} . J=7.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.89-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.43(\mathrm{~m}, 4 \mathrm{H})$, 1.01-0.89 (m, 6H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3,146.2,138.1,137.5,136.6,131.5$, $130.9,129.8,129.4,129.2,128.8,128.4,128.3,127.1,127.0,126.2,125.4,125.0,124.2,122.9$, $120.1,52.5,34.3,34.0,33.7,33.3,31.8,23.2,23.0,22.9,14.4,14.3,14.2$. MS (FAB) $m / z: 526$ $\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{BrO}_{2}$: C, 72.86; H, 5.92. Found: C, 72.86; H, 5.81.

4-(6-bromo-3,8-dibutylpyren-1-yl)benzaldehyde 15: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.1(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=9.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.06-8.04(\mathrm{~m}, 5 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 3.30 (t. $J=7.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.16 (t. $J=7.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $1.85-1.56$ $(\mathrm{m}, 4 \mathrm{H}), 1.54-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.04-0.97(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 192.1,147.8,138.2,137.5,136.2,135.4,131.48,131.45$, $129.9,129.2,128.9,128.3,128.2,127.0,126.9,126.3,125.4,124.8$, $124.1,123.1,120.2,34.2,33.9,33.6,33.2,23.1,23.0,14.25,14.19$. MS (FAB) m/z: $496\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{BrO}$: C, 74.85 ; H, 5.88. Found: C, 74.81 ; H, 5.94.

1-bromo-3,8-dibutyl-6-(4-methoxyphenyl)pyrene 16: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.43(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.19(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 82.1-8.08(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{t} . J=7.8$, $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.26$ (t. $J=7.8,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 4 \mathrm{H})$, 1.53-1.46(m, 4H), 1.02-0.96 (m, 6H). ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 159.2, 137.8, 137.7, 137.4, 133.8, 131.9, 131.3, 129.8, 128.6, 128.4, $128.2,127.30,127.28,125.7,125.6,124.3,122.4,119.7,114.0,55.6,34.3,34.0,33.7,33.3$, 23.2, 23.1, 14.3, 14.2. MS (FAB) $m / z: 498\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{BrO}: \mathrm{C}, 74.54 ; \mathrm{H}, 6.26$. Found: C, 74.58; H, 6.35.

f) Characterization data for compounds 18-26 in Table 2

4-(3,8-dibutyl-6-(4-methoxyphenyl)pyren-1-yl)pyridine (Table 2, entry 3): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.80(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H})$, 8.25-8.17 (m, 3H), $8.10(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}) .7 .79(\mathrm{~s}, 1 \mathrm{H})$, $7.61(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.57$, (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{t}, J=7.7,7.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.88-1.80(\mathrm{~m}, 4 \mathrm{H})$, $1.55-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.01-0.97(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $159.3,150.0,149.8,137.7,137.2,136.7,134.0,133.9,131.9,129.7$, $129.3,128.6,128.1,127.4,127.1,126.4,126.3,126.1,125.9,124.1$, $123.6,122.5,114.1,55.7,34.3,34.2,33.71,33.70,23.2,14.33,14.32$. MS (FAB) m/z: $497\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{35} \mathrm{NO}: \mathrm{C}, 86.88$; H, 7.09; N, 2.81. Found: C, 86.93; H, 7.06; N, 2.85.

((3,8-dibutyl-6-(4-methoxyphenyl)pyren-1-yl)ethynyl)trimethylsil ane (Table 2, entry $\quad 4$): 1-bromo-3,8-dibutyl-6-(4-methoxyphenyl)pyrene 16 ($125 \mathrm{mg}, 0.25$ mmol) was dried in vacuo in a Schelenk tube with heating, then CuI ($4.8 \mathrm{mg}, 0.025 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(8.8 \mathrm{mg}, 0.0125 \mathrm{mmol})$, and $\mathrm{PPh}_{3}(6.6 \mathrm{mg} 0.025 \mathrm{mmol})$ were added. The whole system was evacuated and backfilled with argon three times, then toluene and $\mathrm{Et}_{3} \mathrm{~N}$ (each 1.5 mL) were added. The reaction mixture was stirred at room temperature for 15 min , and followed by additional stirringat 70 ${ }^{\circ} \mathrm{C}$ for 21 h . The solution was filtered through a pad of celite and florisil, and the crude product was purified with column chromatography (Hexane/ $\mathrm{CHCl}_{3}=9 / 1$) to yield 20 in $71 \%(92 \mathrm{mg})$ as pale yellow solid materials. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.58(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=$ $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.56$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{t}, J=7.7,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{t}$, $J=7.7,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.90-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.02-0.95(\mathrm{~m}, 6 \mathrm{H}), 0.40(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,137.7,136.4,133.9,132.0,131.4,131.3,129.69,129.67$, $128.4,127.4,126.4,125.87,125.86,125.84,125.4,123.9,122.6,117.1,114.1,105.0,99.9,55.7$, $34.5,34.1,33.9,33.5,23.3,23.2,14.41,14.38,0.6$. MS (FAB) m/z: $516\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{OSi}$: C, 83.67; H, 7.80. Found: C, 83.65; H, 7.86.

1-(3,8-dibutyl-6-(4-methoxyphenyl)pyren-1-yl)pyrrolidine (Table 2,
 entry 5): $\mathrm{NaO}^{\prime} \mathrm{Bu}(72 \mathrm{mg}, 0.75 \mathrm{mmol})$ was dried in vacuo in a Schelenk tube with heating, then $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(13 \mathrm{mg}, 0.0125$ mmol), and BINAP ($16 \mathrm{mg}, 0.025 \mathrm{mmol}$) were added. The vessel was purged with argon. Toluene (2.0 mL) was added to the vessel, and stirred for 15 min. Then, 1-bromo-3,8-dibutyl-6-(4-methoxyphenyl)pyrene 16 ($125 \mathrm{mg}, 0.25$ mmol) was added, and stirred for 15 min . Pyrrolidine ($0.06 \mathrm{~mL}, 0.75$ mmol) was added, and the vessel was sealed. The mixture was slowly heated to $90^{\circ} \mathrm{C}$ over 1.5 h . After stirring for a further 25 h at $90^{\circ} \mathrm{C}$, the mixture was filtered through a pad of celite and florisil. The crude product was purified with column chromatography (Hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=2 / 1$) to yield $21 \mathrm{in} 80 \%(98 \mathrm{mg})$ as brown solid materials. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 8.66(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.25$ (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H})$, $7.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.42-3.19(\mathrm{~m}, 11 \mathrm{H}), 1.82-1.72(\mathrm{~m}, 8 \mathrm{H}), 1.46-1.39(\mathrm{~m}, 4 \mathrm{H}), 0.94-0.90$ $(\mathrm{m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.0,144.6,137.4,136.0,135.5,134.5,131.9,129.3$, 128.7, 127.9, 127.8, 126.8, 124.2, 124.1, 123.7, 122.8, 121.7, 120.9, 116.5, 114.0, 55.6, 53.9, 34.3, 34.2, 34.1, 25.4, 23.3, 23.2, 14.3. MS (FAB) m/z: $489\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{NO}: \mathrm{C}$, 85.84; H, 80.3; N, 2.86. Found: C, 85.82; H, 7.89; N, 2.99.

dimethyl 2,4'-(3,8-dibutylpyrene-1,6-diyl)dibenzoate (Table 2, entry 6): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.25-8.20(\mathrm{~m}, 3 \mathrm{H}), ~ 8.15-8.08$ $(\mathrm{m}, 3 \mathrm{H}), 7.81-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.72(\mathrm{~m}, 3 \mathrm{H}), 7.68-7.65(\mathrm{~m}, 1 \mathrm{H})$, $7.59-7.51(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 7 \mathrm{H}), 1.87-1.79(\mathrm{~m}, 4 \mathrm{H})$, 1.53-1.42 (m, 4H), 0.99-0.95 (m, 6H). ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 168.5, 167.4, 146.7, 142.2, 137.1, 136.9, 136.6, 136.1, 132.7, 132.2, 131.7, 131.0, 130.4, 129.9, 129.1, 129.0, 128.9, 128.7, 128.4, 127.8, $127.7,127.3,126.4,126.0,125.4,124.7,123.4,122.8,52.5,52.1$, $34.31,34.30,33.8,33.7,23.2,23.1,14.4,14.3$. MS (FAB) m/z: 582 $\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{O}_{4}$: C, 82.44; H, 6.57. Found: C, 82.45; H, 6.59.

methyl 4-(3,8-dibutyl-6-((trimethylsilyl)ethynyl)pyren-1-yl) benzoate (Table 2, entry 7): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.62(\mathrm{~d}, J$ $=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, 8.15-8.09 (m, 2H), $8.03(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.71$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.01(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{t}, J=7.7 \mathrm{~Hz}, 7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{t}, J=7.7 \mathrm{~Hz}, 7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 189-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.03-0.96(\mathrm{~m}, 6 \mathrm{H}), 0.41$ $(\mathrm{s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4,146.4,137.8,136.8$, $136.6,131.5,131.3,131.0,129.9,129.5,129.3,129.2,129.0,127.1$, $125.9,125.75,125.74,123.8,123.2,117.5,104.7,100.2,52.5,34.5$, 34.1, 33.9, 33.5, 23.3, 23.2, 14.4, 14.3, 0.5. MS (FAB) $m / z: 544\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{O}_{2}$ Si: C, 81.57 ; H, 7.40. Found: C, 81.58 ; H, 7.48 .

2,4'-(3,8-dibutylpyrene-1,6-diyl)dibenzaldehyde (Table 2, entry 8): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.18$ (s, 1H), 9.66 (s, 1H), 8.25 (d, $J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.21-8.15(\mathrm{~m}, 3 \mathrm{H}), 8.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.86-7.76(\mathrm{~m}$, $6 \mathrm{H}), 7.67-7.59(\mathrm{~m}, 2 \mathrm{H}), 3.37-3.31(\mathrm{~m}, 4 \mathrm{H}), 1.89-1.79(\mathrm{~m}, 4 \mathrm{H})$, 1.52-1.44 (m, 4H), 1.0-0.96 (m, 6H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 192.4, 192.2, 148.0, 145.2, 137.5, 136.9, 136.3, 135.4, 135.3, 133.9, $132.7,132.5,131.6,130.1,130.0,129.3,129.1,128.9,128.8,128.5$, $127.5,127.2,126.1,125.9,125.3,125.2,123.7,123.4,34.3,34.2$, 33.7, 33.6, 23.2, 23.1, 14.29, 14.27. MS (FAB) $m / z: 522\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{O}_{2}$: C, 87.32; H, 6.56. Found: C, 87.35; H, 6.68.

4-(3,8-dibutyl-1,11-bipyren-6-yl)benzaldehyde (Table 2, entry 9): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.2(\mathrm{~s}, 1 \mathrm{H}), 8.37-8.32(\mathrm{~m}, 2 \mathrm{H}), 8.27-8.02$ $(\mathrm{m}, 11 \mathrm{H}), 7.91-7.85(\mathrm{~m}, 4 \mathrm{H}), 7.70(\mathrm{~d}, J=9.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=$ $9.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}) .3 .41(\mathrm{t}, J=7.6,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{t}, J=7.6,7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 1.95-1.76$ (m, 4H), 1.54-1.40 (m, 4H), 0.99 (t, $J=7.4,7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 0.93(\mathrm{t}, J=7.4,7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 192.3, 148.3, 137.1, 136.9, 136.7, 136.4, 135.9, 135.4, 131.7, 131.6, $131.2,131.1,130.8,130.3,130.0,129.14,129.11,129.05,128.89$, $128.7,127.8,127.7,127.3,126.4,126.3,126.2,126.1,125.5,125.3$, $125.08,125.06,124.83,124.77,123.6,122.9,34.3,34.2,33.7,33.6$, 23.2, 23.1, 14.4, 14.3. MS (FAB) $m / z: 618\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{47} \mathrm{H}_{38} \mathrm{O}: \mathrm{C}, 91.22 ; \mathrm{H}, 6.19$. Found: C, 91.23; H, 6.20.

4-(3,8-dibutyl-6-((trimethylsilyl)ethynyl)pyren-1-yl)benzaldehyde (Table 2, entry 10): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.16(\mathrm{~s}, 1 \mathrm{H}), 8.63$ (d, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.17-8.03(\mathrm{~m}, 5 \mathrm{H})$, $7.84-7.80(\mathrm{~m}, 3 \mathrm{H}), 3.38(\mathrm{t}, J=7.7,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{t}, J=7.7,7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 1.89-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.03-0.97(\mathrm{~m}, 6 \mathrm{H})$, $0.40(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.3,148.1,137.8$, $136.9,136.2,135.5,131.6,131.5,131.2,130.0,129.4,129.20,129.17$, $127.0,126.1,125.74,125.69,125.5,123.7,123.3,117.7,104.7$, $100.35,34.4,34.1,33.9,33.5,23.3,23.2,14.4,14.3,0.6$. MS (FAB) $m / z: 514\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{OSi}: \mathrm{C}, 84.00 ; \mathrm{H}, 7.44$. Found: C, 84.02; H, 7.38.
g) ${ }^{\mathbf{1}} \mathrm{H}$ NMR Spectra for $\mathbf{1 , 6}$-dibromo-3,8-dibutylpyrene

h) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for (6-bromo-3,8-dibutylpyren-1-yl) trimethylsilane 1 ${ }^{1}$ H NMR spectrum: (6-bromo-3,8-dibutylpyren-1-yl) trimethylsilane $\mathbf{1}$

${ }^{13}$ C NMR spectrum: (6-bromo-3,8-dibutylpyren-1-yl) trimethylsilane $\mathbf{1}$

i) $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for Compounds 2-13 Table 1

Table 1, entry 1: ${ }^{1} \mathrm{H}$ NMR spectrum

Table 1, entry 1: ${ }^{13} \mathrm{C}$ NMR spectrum

Table 1, entry 2: ${ }^{1} \mathrm{H}$ NMR spectrum

Table 1, entry 2: ${ }^{13} \mathrm{C}$ NMR spectrum

Table 1, entry 3: ${ }^{1} \mathrm{H}$ NMR spectrum

Table 1, entry 3: ${ }^{13} \mathrm{C}$ NMR spectrum

Table 1, entry 4: ${ }^{1} \mathrm{H}$ NMR spectrum

Table 1, entry 4: ${ }^{13} \mathrm{C}$ NMR spectrum

Table 1, entry 5: ${ }^{1} \mathrm{H}$ NMR spectrum

Table 1, entry 5: ${ }^{13} \mathrm{C}$ NMR spectrum

Table 1, entry 6: ${ }^{1} \mathrm{H}$ NMR spectrum

Table 1, entry 6: ${ }^{13} \mathrm{C}$ NMR spectrum

Table 1 entry 7: ${ }^{1} \mathrm{H}$ NMR spectrum

Table 1 entry 7: ${ }^{13} \mathrm{C}$ NMR spectrum

Table 1 entry 8: ${ }^{1} \mathrm{H}$ NMR spectrum

Table 1 entry 8: ${ }^{13} \mathrm{C}$ NMR spectrum

Table 1 entry 9: ${ }^{1} \mathrm{H}$ NMR spectrum

Table 1 entry 9: ${ }^{13} \mathrm{C}$ NMR spectrum

Table 1 entry 10: ${ }^{1} \mathrm{H}$ NMR spectrum

Table 1 entry $10:{ }^{13} \mathrm{C}$ NMR spectrum

Table 1 entry 11: ${ }^{1} \mathrm{H}$ NMR spectrum

Table 1 entry 11: ${ }^{13} \mathrm{C}$ NMR spectrum

Table 1 entry 12: ${ }^{1} \mathrm{H}$ NMR spectrum

Table 1 entry 12: ${ }^{13} \mathrm{C}$ NMR spectrum

j) $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for Compounds 14,15 , and 16

${ }^{1}$ H NMR spectrum: methyl 4-(6-bromo-3,8-dibutylpyren-1-yl)benzoate 14

${ }^{13}$ C NMR spectrum: methyl 4-(6-bromo-3,8-dibutylpyren-1-yl)benzoate 14

${ }^{1} \mathrm{H}$ NMR spectrum: 4-(6-bromo-3,8-dibutylpyren-1-yl)benzaldehyde 15

${ }^{13} \mathrm{C}$ NMR spectrum: 4-(6-bromo-3,8-dibutylpyren-1-yl)benzaldehyde 15

${ }^{1}$ H NMR spectrum: 1-bromo-3,8-dibutyl-6-(4-methoxyphenyl)pyrene 16

\qquad

${ }^{13}$ C NMR spectrum: 1-bromo-3,8-dibutyl-6-(4-methoxyphenyl)pyrene 16

k) H and ${ }^{13} \mathrm{C}$ NMR Spectra for Compounds 17-26 in Table 2 Table 2, entry 1 : ${ }^{1} \mathrm{H}$ NMR spectrum

Table 2, entry $1:{ }^{13} \mathrm{C}$ NMR spectrum

Table 2, entry 2: ${ }^{1} \mathrm{H}$ NMR spectrum

Table 2, entry 2: ${ }^{13} \mathrm{C}$ NMR spectrum

Table 2, entry 3: ${ }^{1} \mathrm{H}$ NMR spectrum

Table 2, entry 3: ${ }^{13} \mathrm{C}$ NMR spectrum

Table 2, entry 4: ${ }^{1} \mathrm{H}$ NMR spectrum

Table 2, entry 4: ${ }^{13} \mathrm{C}$ NMR spectrum

Table 2, entry 5: ${ }^{1} \mathrm{H}$ NMR spectrum

Table 2, entry 5: ${ }^{13} \mathrm{C}$ NMR spectrum

Table 2, entry 6: ${ }^{1} \mathrm{H}$ NMR spectrum

Table 2, entry 6: ${ }^{13} \mathrm{C}$ NMR spectrum

Table 2, entry 7: ${ }^{1} \mathrm{H}$ NMR spectrum

Table 2, entry 7: ${ }^{13} \mathrm{C}$ NMR spectrum

Table 2, entry 8: ${ }^{1}$ H NMR spectrum

Table 2, entry 8: ${ }^{13} \mathrm{C}$ NMR spectrum

Table 2, entry 9: ${ }^{1} \mathrm{H}$ NMR spectrum

Table 2, entry 9: ${ }^{13} \mathrm{C}$ NMR spectrum

Table 2, entry 10: ${ }^{1} \mathrm{H}$ NMR spectrum

Table 2, entry 10: ${ }^{15} \mathrm{C}$ NMR spectrum

